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This paper is concerned with the effect of a weak spanwise-variable mean-flow 
distortion on the growth of oblique instability waves in a Blasius boundary layer. The 
streamwise component of the distortion velocity initially grows linearly with increasing 
streamwise distance, reaches a maximum, and eventually decays through the action 
of viscosity. This decay occurs slowly and allows the distortion to destabilize the 
Blasius flow over a relatively large streamwise region. It is shown that even relatively 
weak distortions can cause certain oblique Rayleigh instability waves to grow much 
faster than the usual two-dimensional Tollmien-Schlichting waves that would be the 
dominant instability modes in the absence of the distortion. The oblique instability 
waves can then become large enough to interact nonlinearly within a common critical 
layer. It is shown that the common amplitude of the interacting oblique waves is 
governed by the amplitude evolution equation derived in Goldstein & Choi (1989). 
The implications of these results for Klebanoff-type transition are discussed. 

1. Introduction 
Transition to turbulence in boundary layers usually begins with initially linear 

and non-interacting instability waves that grow to nonlinear amplitudes as they 
propagate downstream. The first nonlinear stage of evolution - which might more 
appropriately be referred to as a modal interaction stage - is usually characterized 
by the rapid growth of three-dimensional disturbances due to resonant interactions 
between instability waves and/or between instability waves and streamwise vortices. 

This phenomenon is usually studied experimentally by exciting the flow with 
relatively two-dimensional single-frequency excitation devices. The initial motion, 
say just downstream of the excitation device, should then be periodic in time and 
reasonably well described by linear instability theory - provided, of course, the 
excitation levels are sufficiently small. The typical mean flow is relatively two- 
dimensional and fairly close to a Blasius profile at the low Mach numbers where 
most of the experiments have been carried out. The instability wave growth rates 
should then be small compared to the inverse of the mean boundary-layer thickness 
in these experiments. 

When flow visualization devices are used, the initial modal interaction stage is 
evidenced by the appearance of A-shaped structures which can either be aligned 
or staggered in alternating rows. The aligned arrangement, which occurred in the 
original Klebanoff & Tidstrom (1959) and Klebanoff, Tidstrom & Sargent (1962) ex- 
periments, is usually referred to as 'peak-valley' splitting. It is believed to be a 
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complex phenomenon (Kachanov & Levchenko 1984, $5.2) that can be explained in 
terms of at least three different (relatively weak) resonant-type interaction mechanisms 
each of which probably plays a role in one or more of the many experiments that 
have been carried out to study this phenomenon (Kachanov et al. 1985; Kachanov 
1987; Hama & Nutant 1963; Kovasznay, Komoda & Vasudeva 1962; Nishioka, Asai 
& Iida 1979; and others). 

A resonant-type interaction involving weak streamwise vortices seems to have 
played an important role in the original Klebanoff & Tidstrom (1959) and Klebanoff 
et al. (1962) experiments. The present paper is an attempt to provide a systematic first- 
principles analysis of this phenomenon by using high-Reynolds-number asymptotic 
methods. There has been a tendency in the literature to separate such analyses into 
wave-wave interactions (Goldstein 8z Lee 1992; Mankbadi, Wu & Lee 1993; and 
Wundrow, Hultgren & Goldstein 1994) and wave-vortex interactions (Hall & Smith 
1988, 1991; Smith & Walton 1989; and Bennett, Hall & Smith 1991). This paper, 
which brings together a number of recent ideas in order to shed some light on 
the Klebanoff-type transition process, turns out to be a combination both of these 
approaches. 

We first consider the initial linear region, just downstream of the excitation device, 
where the instability waves are still small enough so that no significant modal in- 
teractions take place. The instability waves will grow on the relatively slow viscous 
time scale when the mean flow is two-dimensional, with the two-dimensional mode 
exhibiting the most rapid growth. However, even relatively weak spanwise-periodic 
mean-flow distortions (i.e. streamwise vortices) can cause certain oblique modes to 
grow on the inviscid time scale through a kind of resonant-interaction mechanism first 
considered for Gortler vortices by Nayfeh (1981) and later by Bennett & Hall (1988), 
Nayfeh & Al-Maaitah (1988) and Hall & Seddougui (1989). This resonant interac- 
tion allows the oblique modes to grow faster than the plane wave once the Reynolds 
number becomes sufficiently large. The streamwise vortices, which are generated 
whenever quasi-periodic cross-flow velocities exist in the flow, have streamwise veloc- 
ity components that initially grow in proportion to the downstream distance (Herbert 
& Lin 1993). These velocity components can then become quite large before viscous 
and/or nonlinear effects cause them to saturatet. 

It is therefore appropriate to suppose that the spanwise-periodic motions are 
initiated by a steady cross-flow with spanwise wavenumber, say 2p., and a pair of 
equal-amplitude oblique instability modes with the same streamwise wavenumber and 
scaled frequency but opposite spanwise wavenumbers, say i-p.. These two modes 
combine to form a standing wave in the spanwise direction that propagates only in the 
direction of the free stream. This situation is typical of wave-excitation experiments 
which often involve relatively long excitation devices oriented perpendicular to the 
free-stream direction. 

When the Reynolds number is sufficiently large, the streamwise vortices can persist 
over streamwise distances that are long enough to enable the oblique modes to reach 
nonlinear amplitudes. Since the oblique-mode growth rates turn out to be small 
compared to the spanwise wavenumbers in the present analysis, the initial nonlinear 
interactions are confined to a localized region centred around the so called 'critical 
level' where the streamwise component of the mean-flow velocity is equal to the 
common phase speed of the oblique modes. The flow outside the critical layer is still 

This is related to, but somewhat different from, the algebraic growth mechanisms studied by 
Ellingsen & Palm (1975), Hultgren & Gustavsson (1981) and Landahl (1990). 
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governed by linear dynamics and is given by the superposition of a Blasius flow, a 
spanwise-periodic mean-flow distortion and a pair of oblique instability modes. The 
common amplitude of the oblique modes is completely determined by the nonlinear 
dynamics within the critical layer. 

The critical-layer nonlinearity turns out to be weak in the sense that it enters 
through an inhomogeneous term in a higher-order problem rather than through a 
coefficient in the lowest-order or dominant-balance equation. This ultimately means 
that the oblique-mode amplitude is completely determined by a single amplitude- 
evolution equation. It turns out that this equation is effectively the same as the one 
that was obtained by Goldstein & Choi (1989), who considered the related problem 
of the interaction of two oblique modes in a two-dimensional shear layer. 

Since this type of interaction has already been shown to play a role in both 
the subharmonic transition process (Goldstein & Lee 1992; Mankbadi et al. 1993; 
and Wundrow et al. 1994) as well as in one of the major competing scenarios for 
the harmonic transition process (Goldstein & Lee 1992), this adds to the growing 
evidence that it is a relatively universal mechanism that can occur in many of the 
transition processes identified in the literature. It is our belief that this identification 
of universal mechanisms is one of the important ways in which the fundamental 
theory can contribute to our understanding of the very complex and multifaceted 
transition process. 

The paper is organized as follows. The spanwise-periodic mean-flow distortion is 
analysed in $3. The linear stability of this flow is considered in $44 and 5 where it is 
shown that even relatively small distortions can cause the oblique instability modes to 
grow more rapidly than the fastest growing plane wave when the Reynolds number 
is sufficiently large. The nonlinear effects are considered in $6 where it is shown 
that the nonlinearity is weak and the common amplitude of the oblique modes is 
governed by the amplitude evolution-equation derived in Goldstein & Choi (1989), 
but with different numeric coefficients. The implications of the results are discussed 
in $7. 

2. Formulation 
To fix ideas, we consider the incompressible flow over an infinitely thin flat plate 

and suppose that a small-amplitude motion is suddenly imposed on the flow (say by 
a vibrating ribbon or other excitation device) at a distance L. downstream from the 
leading edge (see figure 1). We believe that this provides an adequate representation of 
the experimental configuration used by Klebanoff & Tidstrom (1959). The Cartesian 
coordinate system (x ,y ,z)  is attached to the plate at L. with x aligned with the 
free stream, y normal to the plate, and z in the spanwise direction. All lengths are 
non-dimensionalized by 6. where 

6.  = L./R1l2 (2.1) 

R = L.U,/v. (2.2) 

is characteristic of the mean boundary-layer thickness at L. and 

is the global Reynolds number based on the free-stream velocity U,  and the kinematic 
viscosity v.. The time t, velocity 11 = iu + j v  + kw, and pressure variation p from the 
free-stream value P, are non-dimensionalized by 6. / U,, U ,  and p. Uk,  respectively, 
where p. is the density. With this non-dimensionalization, the Navier-Stokes equations 
become 
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FIGURE 1. Flow configuration 

ut + WVU + Vp = R-’/’V’U, (2.3) 

v-u = 0, (2.4) 
where V = id/dx + jd/dy + kd/dz  is the gradient operator and an independent 
variable used as a subscript denotes differentiation with respect to that variable. 

An excitation device placed perpendicular to the free stream, as in the Klebanoff 
& Tidstrom (1959) experiment, will generate a disturbance which ultimately develops 
into a two-dimensional instability wave plus a weaker three-dimensional component 
that can probably be described by a small-amplitude spanwise-periodic mean-flow 
distortion plus a pair of equal-amplitude oblique instability modes that form a 
standing wave in the spanwise direction. Since we initially consider the case where the 
spanwise length scale of the disturbance is long compared to the local boundary-layer 
thickness, we introduce the scale factor a through 

ap s s,p*, p = 0(1), (2.5) 

and require that 0 < 041. The case where a is order one is discussed at the end of 97. 
The distinguished scaling for the imposed cross-flow velocity at x = 0 turns out to be 
@R-’/’Wo(y,oz) where WO is order one and the 0 = l / l n o  factor is a consequence 
of the near-wall behaviour assumed for WO (see (3.17) and (3.29) below). We do not 
consider the complicated issue of how the mean cross-flow WO is generated in an 
experiment of the Klebanoff & Tidstrom (1959) type, but it appears that a flow of the 
type considered here could be produced by spanwise imperfections in a ribbon that 
is located sufficiently far from the wall, i.e. outside the viscous wall layer discussed in 
Appendix B. 

3. Mean-flow distortion 
The imposed cross-flow @R-‘/’ Wo(y, az) generates a mean-flow distortion that 

ultimately decays out through the action of viscosity, but causes the mean flow to 
become inflectional before this occurs. This allows certain initially linear instabilities 
to grow to nonlinear amplitudes by essentially inviscid mechanisms. It turns out that 
the most inflectional profiles lie in the region where 

(3.1) x2 3 x/a3R’/’ = 0 (I), 
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for 0 < a < 1. This length scale will be long compared to the triple-deck length scale 
when 

o$l/R'/', (3.2) 
which is now assumed to be the case. 

expand like 
When a is order one, the mean-flow velocity U = iU + j V  + kW and pressure P 

and are determined by the parabolized Navier-Stokes equations (Rudman & Rubin 
1968) 

O(i6 + P)xz + P.v,(iir + PI + v,? = ~ 2 , ( i O  + PI, 
Oxz + v,*P = 0, 

(3.5) 

(3.6) 
where P = j ?  + k @  and V, = j d / a y  + kd /dz  denote, respectively, the mean 
velocity and gradient operator in the transverse plane; but, when 041, the mean 
flow is interactive - though only in the spanwise direction - and is governed by 
the three-dimensional boundary-layer equations in the main part of the flow field. 
The initial distortion becomes fully interactive in a sufficiently small neighborhood 
of x2 = 0, but this region is of little interest here since (with the present scaling) it 
has negligible effect on the instability waves. Its structure is discussed in Appendix 
B for the long-wavelength limit 0 4 1  in order to show how the x2-scale flow (to be 
discussed below) evolves from the initial disturbance. 

Since (3.5) and (3.6) must be solved numerically, the relevant physical mecha- 
nisms can best be understood by concentrating on the long-wavelength limit a< 1 
for which analytic solutions can be obtained. The discussion of the order-one- 
wavelength case is deferred to the end of 97. The structure of the long-wavelength 
solution is similar to the short-spanwise-wavelength triple-deck solutions worked out 
by Rozhko & Ruban (1987) and by Choudhari, Hall & Streett (1992), but some new 
results are obtained. 

3.1. The main boundary layer 

In the main region where x2 and y are both order one, the spanwise-variable mean 
flow is an inviscid perturbation about the local Taylor series expansion of the Blasius 
solution. The mean-flow velocity and pressure in this region expand like 

(3.7) 

(3.8) 

(3.9) 
(3.10) 

U = F' - u3;x2yF" + a4Uo + O(a5), 

v = R-'l2 [ i (yF'  - F )  4- ~ V D  4- 0(a2)]  , 
w = ~ R - ' / ~ [ w ~  + ~ ( a ~ n o ) ] ,  
P = C3R-'[PD + O(O)], 

where F ( y )  denotes the Blasius function which satisfies 

F"' + iFF"  = 0, F(0 )  = F'(0) = 0, F'(co) = 1, (3.11) 

Uo, Vo, and Wo are functions of x2, y and 

I = az, (3.12) 
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PO is a function of x2 and Z only, and a prime denotes differentiation with respect to 
the argument. Substituting (3.7)-(3.10) into (2.3) and (2.4) and using the fact that 

WD -+ Wo(y,Z) as x2 -+ 0 (3.13) 

leads to 

where 

(3.14) 
(3.15) 
(3.16) 

(3.17) 

and ,lo E F”(0) = 0.33206 is the Blasius wall-shear stress. The particle displacement 
d and pressure distribution Po are, at this point, arbitrary functions of x2 and 
5. However, matching with the fully interactive solution discussed in Appendix B 
requires that 

d, d,, --t 0 as x2 + 0. (3.18) 
d and PD have the implicit a dependence 

d = d O ( X 2 3 5 )  + @dl(x2,5)7 PD  = PO(x292) + *Pl(x2,5), (3.19) 

where the order-one terms have been inserted to facilitate matching with the solution 
in the viscous wall layer to be discussed below. A a dependence similar to that in 
(3.19) will be implicitly assumed in the corresponding dependent variables in the wall 
layer as well as in the inviscid outer layer which is considered next. 

3.2. The outer layer 
Since the solution (3.15) does not vanish as y + 00, it is necessary to introduce an 
outer region where 

y = a y  = O(1) (3.20) 
in order to satisfy the appropriate free-stream boundary conditions. The solution in 
this region relates Po and d. 

Substituting (3.1), (3.12) and (3.20) into (2.3) and (2.4) and matching with the 
main-boundary-layer flow shows that the solution in the outer layer expands like 

(3.21) 
(3.22) 
(3.23) 
(3.24) 

where 
c = -  

00 - ; lim LY - &)I 
Y -00 

and it has been assumed that Wo = o(y-’) as y -+ co, i.e. that the imposed cross-flow 
is effectively confined to the boundary layer. (The physical mechanisms involved in 
imposing a weak cross-flow at the outer edge of the boundary layer are beyond the 
scope of the present study but are discussed in Goldstein, Leib & Cowley 1992 and 
Goldstein & Leib 1993.) The functions U ,  v, F?’ and P of x2, J and Z are determined 
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by the linearized Euler equations. It follows from these equations that 

Pyy + P,, = 0 (3.25) 

while the free-stream boundary conditions and matching with the main-boundary- 
layer solution require that 

P - + O  as J I + C O ,  (3.26) 
and 

P = PO, Py = .O2,,,, at jj = 0. (3.27) 
The solution to (3.25)-(3.27) is most easily found by expressing P as the real part of 
an analytic function of the complex variable Z + i?. The Cauchy integral formula can 
then be used to relate PO and d. For the spanwise-periodic mean flows that are of 
interest here, this leads to 

where f denotes the Cauchy principal value. 

3.3. The viscous wall layer 
It will now be assumed that 

9 q Z )  = Wo(0,I) # 0. 

(3.28) 

(3.29) 

(The case where Wo(0,Z) = 0 is much more complex and is best studied by considering 
the order-one-wavelength problem discussed at the end of 57.) It then follows from 
(3.14), (3.17) and (3.29) that 

UD -+ ;lo& + 8x2B'lny as y + O (3.30) 

and consequently that U will not satisfy the proper wall boundary condition. It is 
therefore necessary to introduce a viscous wall layer, where 

Y = y / a  = 0(1), (3.31) 

in order to bring U to zero at the wall. The mean velocity in this region expands like 

u = a10 Y + a4( 6 - &/I; Y 4 - $OXZ Y )  + . . . , (3.32) 

(3.33) 

(3.34) 

V = a2 R-'I2( P + $20 Y 2, + . . . , 
W = R-l /2f i  + . . . , 

where u, P and fi are functions of x2, Y and 6. 
Substituting (3.32)-(3.34) and (3.10) into (2.3) and (2.4) yields 

lloY ox, + AOP = o y y ,  

u,, + P y  + fi, = 0. 

(3.35) 

(3.36) LOy fix, + PO, = f i Y Y ,  

(3.37) 
It follows from (3.29) and (3.30) that the solution to these equations must satisfy the 
boundary conditions 

0 = 8 = f i = 0  at Y =o, (3.38) 
and 

6 -+ ~~d + ax29?'ln(aY), fi + CB as Y + 00. (3.39) 
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6 + 0, W -+ a g  as x2 -+ 0, (3.40) 

since the thickness of the viscous wall layer goes to zero as x2 + 0. 
Eliminating P between (3.35) and (3.37) leads to 

loY 6yx. - AQW? = O y y y ,  (3.41) 

which determines 6 once w is known. This equation must be solved subject to 

O l r Y = ~  at Y = O  (3.42) 

in addition to (3.38)-(3.40). Since the boundary-value problem (3.36) and (3.38)-(3.42) 
has a similarity solution when PD is set equal to zero and d is selected appropriately, 
it is convenient to seek a solution of the form 

(3.43) 6 = LTx2BAI(Z)F(q) + 6 ( I ) ( x 2 ,  Y ,  z ; a), w = 69?(5)G(q) + v?l(')(x,, Y ,  8 ; 0 )  

q = ( ~ O / X ~ ) ' / ~ Y ,  (3.44) 

p + y p - z  311 p=-c  ( y + p & o  (3.45) 

where 

and E and e are determined by 

with 

and 

It follows that 

F = F " = G = o  at q = o ,  

F + l n q ,  G + I  as q + m .  

G = r(;)-$(;,T), 

(3.46) 

(3.47) 

(3.48) 

where z = q3/9, is the usual gamma function and y is the incomplete gamma 
function defined on page 260 of Abramowitz & Stegun (1964). It can also be shown 
that 

(?, ?, t)dt - $)-' [d3e-' + (z + $)y( i, z)] , (3.49) 
10  t-2/3e-'M 

1rz-1 p = ( 3 )  

where M denotes a confluent hypergeometric function in the notation of Abramowitz 
& Stegun (1964, p. 504). 

The inhomogeneous solutions 6(') and @ ( I )  can be found by taking Laplace 
transforms with respect to x2. The details are given in Appendix A where it is shown 
that 

x P D , ,  = -I-( ;)Q, (') - 1'' &re(<, 8; 0)(x2 - 5)-2/3d<, (3.50) 

and 

where x = I'(;)2/(9Ai)1/3, 
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E(') is given by (A 17), C1 is given by (A7) and y denotes the digamma function 
defined on page 258 of Abramowitz & Stegun (1964). 

The pressure distribution PD and the particle displacement & can now be found 
from the coupled equations (3.28) and (3.50). These equations, together with (3.14), 
(3.15) and (3.18), imply that 

UD - ifx2FffHj and VD - -ifFfH, as x2 + 0, (3.53) 

while 

which shows that PD becomes singular in this limit. However, as already indicated, the 
expansions (3.7)-(3.10) become invalid in the upstream region where the streamwise 
and spanwise length scales are comparable, i.e. where 

2 = g x  = O( 1). (3.55) 

The relevant fully interactive solution is constructed in Appendix B where it is shown 
that the pressure distribution that matches onto (3.54) as 2 + 00 remains bounded at 
2 = 0. 

Equations (3.18), (3.28) and (3.50) also imply that 

(3.56) 

which, when combined with (3.14) and (3.44), shows that the viscous wall-layer 
thickness increases like as x2 + 00 and that it fills the entire Blasius boundary 
layer when x/R112 = u3x2 = O(1). However, (3.7) implies that the streamwise velocity 
component of the vortex flow will still be small compared to that of the Blasius 
profile in this region. This, in turn, shows that the vortices undergo their entire life 
cycle from initial algebraic growth to ultimate viscous decay while still remaining 
small compared to the basic Blasius flow. 

4. Structure of the instability waves 
We now consider the oblique instability modes that are generated by the excitation 

device and which initially grow in accordance with linear dynamics. If it were not for 
the streamwise vortices, only the slowly growing Tollmien-Schlichting waves would 
be amplified by the mean flow but, as noted by Prandtl (1935) and Stuart (1965), the 
rapidly growing streamwise velocity perturbation can cause the mean flow to become 
inflectional and thereby support inviscid Rayleigh instabilities that exhibit much 
larger growth rates (when CT is sufficiently large relative to K1). The inflection point 
will always lie close to the wall since the vortex velocity is always small compared 
to the streamwise velocity of the Blasius profile (the actual distance turns out to be 
O(o)). The maximum inviscid growth of the instability waves will take place in the 
streamwise region where x2 = 0(1)  since it follows from (3.43), (3.49), (3.51) and 
(3.56) that 

Oyy + O  as x2 + co at Y =constant. (4- 1 ) 
The expansions (3.7)-(3.9) and (3.32)-(3.34) and the inequality (3.2) show that 

the cross-flow velocity components of the vortex remain small compared to its 
streamwise component in this region. This means that the initially linear instability 
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modes, whose wavelengths are small on the x2 scale, are only affected by this latter 
velocity component and therefore behave (to lowest order of approximation) like linear 
perturbations of the uni-directional transversely sheared mean flow U(x2, y, 2 ;  o), with 
the slow streamwise variable x2 entering only parametrically, i.e. playing the role of 
a constant. It therefore follows from inviscid instability theory that the wavelength 
of the most rapidly growing waves will be O(o-'6.) which is long compared to the 
boundary-layer thickness but small compared to the downstream distance from the 
excitation device, say x = 

The initially linear non-interacting instability waves will eventually become nonlin- 
ear when their amplitudes become sufficiently large. However, the resulting nonlinear 
effects will be confined to the critical layer since the linear growth rates are small 
compared to the corresponding wavenumbers and the Reynolds number is large. 

The flow outside this layer will still be determined by linear dynamics. Its velocity 
and pressure will expand like 

where G is order one. 

u = u + E ( i h  + job + kh) + . * * , 
p = P + E j +  . .., 

where h, 5 ,  w, and t, are functions of 

Ji: G ox - (4.4) 

y, 2 and 

t G at, (4.5) 
and E Q  1 characterizes the local amplitude of the unsteady disturbance in the stream- 
wise region where nonlinear effects first become important. The precise relationship 
between E and o will be specified below when the flow in the critical layer is considered. 

Substituting (4.2) and (4.3) into (2.3) and (2.4) and linearizing the result about the 
mean flow U yields 

- 

D(h, S, W) + (UY5 + UZW, 0,O) + (jx, K 2 j , , , j j )  = O ( K '  R-'l2), 

hji + ii, + w, = 0, 

(4.6) 

(4.7) 
where D = 8/87 + U8/& is the leading-order convective derivative relative to the 
mean flow. These equations are just the familiar equations for the linear perturbations 
about a uni-directional transversely sheared mean flow (Goldstein 1976 ; Henningson 
1987). It is well known that the velocity fluctuations can be eliminated between 
them (see Goldstein 1976, pp. 6 1 0  for a detailed derivation) to obtain the following 
equation for the pressure fluctuation: 

D(o-2fi,, + V t j )  - o-22u Y P X Y  '- - 2u- ' - -  Z P X Z  - - O(C-'R-'/~ ) 9  (4.8) 

where Vi = d2/8X2 + d 2 / Z 2  is the Laplacian in the horizontal plane. 
Since o ~ l ,  our interest is in the long-wavelength instability wave solutions to (4.8). 

We subsequently show that, as in the case of a strictly two-dimensional mean flow, 
the relevant x-scale growth rates are O(04), which means that the solutions grow on 
the relatively long scale 

As a minimum, we want o to be large enough so that these growth rates are at least 
as large as the relatively small, i.e. O(R-'l5), viscous growth rates corresponding to 
the upper-branch scaling for the Tollmien-Schlichting waves (Bodonyi & Smith 1981 ; 

~1 04(x - o~R"~G)  = a3X. (4.9) 
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Goldstein & Durbin 1986). This means that we should require 

R-'/20 = O ( g )  (4.10) 

which is consistent with the inequality (3.2) and includes the case R-'l2O = O ( B )  in 
which the growth rates are larger than the corresponding upper-branch growth rates 
of the Tollmien-Schlichting waves. In any event, the O(O-'R- ' /~)  error terms will 
then be small compared to the wave-growth terms in (4.6)-(4.8) and these equations 
will then be accurate enough to determine the instability wave solutions outside the 
critical layer - provided we allow for a thin Stokes layer in the near-wall region where 

As already indicated, the initial upstream disturbance includes an unsteady three- 
dimensional component that is best represented by a pair of equal-amplitude oblique 
instability modes having the same streamwise wavenumber and scaled frequency but 
opposite spanwise wavenumbers. These modes form a standing wave in the spanwise 
direction that exhibits its most rapid growth when its spanwise wavelength is twice 
that of the mean-flow distortion, i.e. when its spanwise wavelength is 2x/p. 

The resulting solution for the unsteady portion of the flow will then be of the form 
originally assumed by Henningson ( 1987), namely 

(h,b,w,b) = Re [A(fi,O,G,fj)e"Y +B($,O,O,O)] (4.11) 

where A(x1) is a slowly varying amplitude function that accounts for the growth 
of the instability waves, Re [B(xl)$(y ,  Z)] is a spanwise-variable mean-flow distortion 
that is generated by nonlinear effects in the critical layer, 

x = B(X - OC?), (4.12) 

and the real quantities B(a) and ?(a) are the scaled streamwise wavenumber and 
phase speed correct up to but not including O(cr3) terms. cl and C possess expansions 
of the form 

(4.13) 
as cr + 0 where BO and Zo are order-one constants. The corresponding scaled Strouhal 
number or (non-dimensional) angular frequency is 

s = clC (4.14) 

where S is an order-one real constant. Substituting (4.11) into (4.8) shows that, outside 
the Stokes layer, the function f j  of x l ,  y and Z is determined to the required order of 
accuracy by 

= 0 ( ~ - 1 ~ - ' / 4 ) .  

8 = go +. . . , = Co + f f f 

(4.15) 

where 

a = cl - 03iA'/A and c = oS/a, (4.16) 
which ensures that the instability wave is periodic in time. It follows from (4.6), (4.7) 
and (4.11) that the velocity fluctuations are determined in terms of f j  by 

(4.17) 

(4.18) 
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h iBz 
W =  

a(U - c)' 
(4.19) 

The solution to (4.15) that satisfies the homogeneous boundary condition 

$ + O  as y + c c  (4.20) 

and matches onto the Stokes-layer solution as y + 0 is derived in the following 
section. 

5. Solution outside the critical layer 
5.1. The Stokes layer 

Viscous effects, if they enter the reckoning, can only affect the solution within the 
critical layer and within a thin Stokes layer induced by the no-slip boundary condition 
at the wall. The appropriate scaled transverse variable for the latter region is 

E =  OR'/^^. (5.1) 

Substituting (4.2), (4.11) and (5.1) into (2.3) and (2.4) shows that the unsteady flow is 
determined to the required order of approximation in this region by 

- iaS(Q,t~R'/~6,  G) + (i@, R'/2Pp,P2) = o(Q, CTR' /~~ ,  i $ ) p ~ ,  

iaQ + ~ r R ' / ~ a p  + Gz = 0, 

(5.2) 

(5.3) 

Q = ~ = + = o  at r=o. (5.4) 

together with the boundary condition 

The velocity fluctuations can be eliminated between (5.2) and (5.3) to arrive at 
an equation for the pressure fluctuation. The equation for the transverse velocity 
fluctuation 6 can then be obtained by combining the F derivative of the pressure 
equation with the transverse component of (5.2). The solution that satisfies (5.4) and 
does not exhibit exponential growth as E + co is 

6 = o - l ~ - l  14 a o  - -3 ( a ~ + e - a Y  - 
(5.5) 

where GI = e-in/4S1/2 and a is an arbitrary function of x1 and 2. It follows from (5.5) 
and the transverse component of (5.2) that 

fjF = oR-'I2a( y - 6 - l )  (5.6) 

which now can be used to derive the appropriate boundary condition for (4.15) as 
y + 0. 

5.2. The inviscid wall layer 
Introducing the wall-layer variable (3.31) into (4.15) and (5.6) and integrating the 
former with respect to Y subject to matching with the latter as Y + 0 shows that 

= ab + 0 ( ~ 5 )  (5.7) 

for Y = 0(1) where b is an arbitrary function of x1 and 3 that has an expansion in 
o containing terms up to but not including O(04). It turns out that 

b = bo + . . . + io3b3i + . . . (5.8) 
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as a + 0 where bo depends on Z only and the coefficients bo to b3i are purely real 
so that bo and a3b3 are the leading-order approximations to the real and imaginary 
parts of b. 

To determine the dispersion relation, the small-a expansion of B y  is needed. By 
using (5.7) together with the expansions (3.32) and (4.16), (4.15) can be integrated 
with respect to Y to obtain, after some manipulation, 

] + ... (5.9) 
EY2 iA' 

+-9 @ + P ( @  - +-) - - -+  
O6 4 1 .Y,'(Y - YC)2 A 05Rtz2a 

where 9 = b,a/& + bll - a2b, the transverse position of the critical level y ,  = aY, is 
determined by the condition 

U ( / ,  y,, Z; a) = az, (5.10) 

the & superscript indicates different values for Y 2 Y,, @ is the real function of Y 
and Z determined by 

i(Y -YC)3@y = 8(e,Y,z;a)-8(e,Y,,Z;o)--n;(Y4-Yy,4)-inoe(Y -Yc), (5.11) 

with Qi = 0 at Y = 0, and 

ji = 8yy(&, Y,,Z;o) - ;n;Y; (5.12) 

is the scaled normal derivative of the mean vorticity at the critical level. Matching 
(5.9) with the Stokes-layer solution (5.6) as Y -+ 0 shows that 

a = -bii + ci2b (5.13) 

where use has been made of the small-a expansion 

Y, = z/n0 + 0 ( ~ 3 ) ,  (5.14) 

It follows from (4.17) and (5.7) that the discontinuity in (5.9) results in a jump in 

Ah = -a39 [ji (4' - qT) /A@2] + . * .  (5.15) 

across the critical layer. Matching this jump with the one induced by the flow in the 
critical layer determines the integration 'constants' 4* (which are at most functions 
of x1 and 2). The velocity jump corresponds to a logarithmic phase shift of 7c when 
the critical layer is linear, which leads to the requirement that 

4 + - @ - + i n  as x1 +-a. (5.16) 

This ensures that the nonlinear solution (to be discussed below) will match onto the 
appropriate linear solution in the upstream region. 

which is easily obtained from (3.7) and (5.10). 

the streamwise component of the velocity fluctuation 

5.3. The main boundary layer 
Equations (5.7) and (5.8) together with the expression for By obtained by substituting 
Y = y /a  into (5.9) and re-expanding the result suggest that, in the main part of the 
boundary layer, 8 should expand like 

= a (bo + a82 + . . .) + ia4 (b3i + atsi + . . -) (5.17) 
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where $2 and f j s i  are real functions of xl ,  y and 5 and only the first two terms in the 
small-o expansions of the real and imaginary parts of f j  are shown. Substituting (3.7) 
and (5.17) into (4.15), and integrating with respect to y yields 

$2, = d2Ff2,  $5iy = d5iFf2, (5.18) 

where d2 and d j i  are at most functions of x1 and 5. Matching with the real and 
imaginary parts of the wall-layer solution (5.9) then shows that 

where 

and 

(5.19) 

(5.21) 

(5.22) 

are the scaled leading-order approximations to the real and imaginary parts of 9, 
respectively. 

5.4. The outer layer 
Equation (5.18) shows that the solution (5.17) does not satisfy the free-stream bound- 
ary condition (4.20) and it is, therefore, necessary to construct the solution for $ in 
the outer region described by (3.20). Substituting (3.20) into (5.17) and making use 
of (3.11) and (5.18) shows that, in this region, $ expands like 

$ = opl + . . . + io4p4 + . . . (5.23) 

where p1 and p4i are real functions of XI, J and 5 and only the leading-order terms 
in the small-o expansions of the real and imaginary parts of $ are shown. p1 and p 4 i  

must satisfy 

p1 = bo, ply = d2, p 4 i  = b3i, p4iy = dgi at j = 0 (5.24) 

in order to match with the main-boundary-layer solution (5.17) and (5.18), and 

pl, p4i + 0 as j j  + G O  (5.25) 

in order to satisfy the free-stream boundary condition (4.20). Equation (3.21) shows 
that the mean streamwise velocity U approaches unity at a fast enough rate to ensure 
that (4.15) reduces to the Helmholtz equation when J = O(1). Therefore, substituting 
(4.16) and (5.23) into (4.15) leads to 

p1-- + P I F z  - a& = 0, (5.26) 
YY 

p4,pg + p4izz - = - 2 a o ~ m ( i l ' / ~ ) p l .  (5.27) 

Up to this point, no restrictions have been placed on the 8-dependence of the solution. 
However, as indicated above, our interest is in the case where the upstream linear 
solution has standing wave behaviour in the spanwise direction with a spanwise 
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wavelength twice that of the imposed cross-flow velocity WO. This means that b 
should be of the form 

(5.28) 
where the normalization 2E has been inserted for convenience. 

b = ~ B c o s ~ Z  + 0(03) 

It now follows from (5.19) and (5.24)-(5.26) that the relevant solution to (5.26) is 

p1 = 2 a o e 4  cos BZ 
where 

r; = (a; + p 2 y 2  = loco .  (5.30) 
The boundary-value problem (5.24), (5.25) and (5.27) only possesses solutions for 
certain values of Im(iA’/A) since p1 is a homogeneous solution to (5.27). These values 
can be found without explicitly solving for p4i by integrating the difference between 
p1 times (5.27) and p4i times (5.26) from j = 0 to co, integrating the result from 2 = 0 
to 2n/p and then using (5.24), (5.25) and the %periodicity ofp  and U to arrive at the 
following solvability condition : 

(bod5i - d2b3i) d2 = 2aoIm(iA’/A) 1” p:djjdz. (5.31) 

(5.29) 

r 
It now follows from (5.19)-(5.22), (5.29) and (5.30) that 

where 6 = arctan(p/ao) is the obliqueness angle of the instability wave and the real 
constant rci has been introduced to account for the O ( 0 3 )  term in the expansion of the 
streamwise wavenumber in the upstream linear region. xi is completely determined 
by the linear problem outside the critical layer but its explicit form is not given here 
because it is not needed for the subsequent analysis. 

Equations (3.43), (3.44), (5.12) (5.14), (5.16) and (5.32) imply that 

A + AOeKX1 as x1 + -co (5.33) 

where A0 is a constant, IC = K ,  + ilci, 

is the common initial parametric growth rate of the oblique modes and 

(5.34) 

(5.35) 

with 0 given by (3.43), (3.49) and (3.51). The last term in (5.34) accounts for the 
viscous-Stokes-layer effect and is negligible when ~s-R-‘/~’. The first term in (5.34) 
represents the growth produced by the resonant interaction with the streamwise 
vortices. It follows from (3.43), (3.51) and (3.52) that this term depends only on 
the behaviour of the imposed cross-flow velocity Wo(y,8)  at the wall, i.e. only on 
B(2). It is always possible to make IC, positive over some range of frequencies by 
appropriately selecting B, which is now assumed to be the case. However, at least for 
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the imposed cross-flows considered here, the resonant interaction with the streamwise 
vortices appears to have a destabilizing effect regardless of the choice for 9 (see 
figures 4a and 4d below). 

6. Nonlinear-critical-layer effects 
Since (5.33) and (5.34) imply that the linear instability wave continues to grow as it 

propagates downstream, nonlinear effects eventually come into play and, as already 
noted, this first occurs locally within the so-called critical layer. The thickness of the 
critical layer (on the y-scale) turns out to be of the same order as the growth rate so 
the appropriate scaled transverse coordinate for this region is 

(6.1) 

Nonlinear terms produce a critical-layer velocity jump at the same order as the linear/ 
parametric-growth terms when the amplitude scale e, which was defined in (4.2), is 
chosen to be 

q = (y - o c / ~ ~ ) / t ~ ~  = ( Y  - z/n0) /03.  

(6.2) 
10 e = o .  

Viscous effects will enter into the dominant balance for the critical layer while making 
only insignificant modifications to the external flow when the Benney-Bergeron 
parameter 

(Benney & Bergeron 1969) is order one. The implied wavelength-Reynolds-number 
scaling (6.3) is more restrictive than (4.10) in the sense that the Stokes-layer contri- 
bution to (5.34) is negligible when 1 = O(1). However, retaining this term in (5.34) 
while assuming ,I = O( 1) in the critical-layer analysis leads to an amplitude-evolution 
equation from which the proper equation for the more viscous case (4.10) can be 
recovered as a limit (see below) and we therefore adopt (6.3) as the appropriate 
wavelength-Reynolds-number scaling for the present problem. 

Since the flow in the critical layer depends on x and t only through the variables 
(4.9) and (4.12), the Navier-Stokes equations (2.3) and (2.4) are expressed in terms of 
the scaled variables XI, X, I, and ij to obtain, to the required order of approximation, 

L E l /c~'~R'/* (6.3) 

(6.4) 
4 

&4 u, w) + (EPx + 0 3 P X l  , o-5Pq, P I )  = fl 4% u, w)ijij, 

3 aux + o u,, + o-5uii + wz = 0, 
where 

- 3 3  a a a 
9 = o  u-+a(u-oc)- +a-5u-+ww-. 

ax1 ax aq a2 

Equations (5.10) and (6.1) imply that 

Y - Y, = o3(q - q,) + ' . * 

qc(z;o) = -&lo(/, Y,,I;o) + $OYp + ;ere 

(6.7) 

(6.8) 

where 

accounts for spanwise variations in the position of the critical level. Introducing (6.7) 
into the expressions for a, 0, Q and 8 obtained from (4.17)-(4.19), (5.7) and (5.9), 
re-expanding the result, and using (3.32)-(3.34), (4.2), (4.3), (4.11), (6.2) and (6.3) 
shows that the critical-layer flow should expand like 
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(6.9) 
(6.10) 
(6.11) 
(6.12) 

where the U,, Un7 W,, and pn  are functions of X ,  XI, i j  and Z that have expansions 
in o containing terms up to but not including O(03). Matching (6.9)-(6.12) with the 
external linear solution requires that 

u1 + [uy(/ ,  YC,Z;o) - $:Y: - 4A0/] ij + 282co~gzRe(Ae'X)/Aoa(ij - qc), (6.13) 

u = OZ' + a4&(ij - i j c )  + 07u1 + d o u 2  + d 3 u 3  + . . . , 
u = O  12 U l + O  15 U 2 + O 1 8 2 ) 3 + . . . ,  

w = d W 1  + cPw* + d 3 W 3  + . * . , 
p = o R Po + 0"2@ cos DZRe(AeiY) + d4p2  + d 7 p 3  + . . . , -3 -1 

and 

w1 + -2p sin pZRe(iAez)/Ao(q - ijc), (6.14) 
as i j  + +a. Matching the critical-layer-induced velocity jump with the external jump 
(5.15) requires 

(6.15) 

Multiplying (6.15) by C O S ~ ~ ,  integrating from Z = 0 to 2x/p and then combining the 
result with (5.32) yields the jump condition 

where, for the reasons given above, the asymptotically small Stokes-layer term has 
been retained in this result. 

Substituting the expansions (6.9)-(6.12) into (6.4) and (6.5) and combining the 
result with (6.13), (6.14) and (6.16) leads to a set of boundary-value problems for the 
u,, u,, w,, and p,.  When these are expressed in terms of the strained coordinate 

4 = r - q c ,  (6.17) 

and the corresponding velocity component 

5, = u, - ijc2 w,, for n = 1,2,3, (6.18) 

we find that 
E l  = -2(a2 + p') cos pZRe(iAez)/&, (6.19) 

and, more generally, that the entire problem is just the viscous version of the 
one solved in Goldstein & Choi (1989), a special case of the one considered in 
Goldstein & Lee (1992), and, except for differences in notation, precisely the one 
considered in Wu, Lee & Cowley (1993). The spanwise variation of the mean flow 
(which is the new feature in the present analysis) now enters the problem only through 
the transverse boundary condition (6.13) as well as the transverse boundary conditions 
for u2, u3, 52, 53, and wg. But, since the spanwise variation of the mean flow introduced 
by these conditions only affects the linear/parametric-growth terms, the solution to 
the present critical-layer problem can be easily deduced from the solutions given in 
the previous investigations. Substituting this solution into the velocity-jump condition 
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(6.16) leads to the following equation for A :  
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where 

M = 27c1$$ cos2 O/(cos2 0 + l), (6.21) 
the asterisk denotes complex conjugation and, in view of (6.3), the initial parametric 
growth rate IC, is given by 

IC, = (6.22) 

The kernel function K is fairly complicated in the general viscous (i.e. order-one A) 
case considered by Wu et al. (1993) and Leib & Lee (1994), but, in the inviscid limit 
first considered by Goldstein & Choi (1989), it is a relatively simple polynomial of 
the streamwise coordinate and is given by 

(6.23) K = (x1 - 51) [kl(xl - 52)(51 - 5 2 )  -k2(X1 - <112 -k3(xl - 5212] 

where 
kl = tan’ Ocos2 28 and k2 = k3 = tan2 Ocos20. (6.24) 

As already indicated the Stokes-layer contribution to IC, is negligible when 1 = O( 1). 
However, retaining this contribution and taking the limit as A/IC;  + 00 of the 
integral term in (6.20) as was done by Wu et al. (1993), leads to the amplitude- 
evolution equation corresponding to the upper-branch Blasius-boundary-layer scaling 

= 0-~1-’ = O(1). In the present notation, this equation is 
x1 

A’ = ICA - i2-4/3M tan2 0 sin2 0 cos 20( +#31-(t)A IA([)l2d<, (6.25) 
J-w 

where 2 = A@;1/% is a rescaled Benney-Bergeron parameter. 

7. Results and discussion 
In one sense, the oblique-mode amplitude equation (6.20) (or its highly viscous limit 

(6.25)) can be thought of as the final result of this paper. While this equation is now 
well known, its application to the present situation is new as is the formula (5.34) for 
the initial parametric growth rate of the oblique modes IC,. The latter accounts for 
the parametric-resonance effects that allow the oblique modes to grow faster than the 
two-dimensional waves which, in turn, allows the oblique-mode interaction described 
by (6.20) to become the dominant interaction in the initial nonlinear stage of the 
transition process. The initial parametric-resonant interaction takes place between the 
relatively weak spanwise-periodic mean-flow distortion (i.e. the streamwise vortices) 
and a pair of equal-amplitude oblique modes that form a standing wave in the 
spanwise direction with spanwise wavelength equal to twice that of the mean-flow 
distortion. Equation (5.34) shows that its spatial growth rate is enhanced by the 
inflectional nature of the mean velocity profile. 

The transverse position of the mean-flow inflection point y, = aY, is determined 
by 

Iyy - in;y2 = o at Y = Y,. (7.1) 
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0 3 6 9 12 
x2 

FIGURE 2. Transverse position of mean-flow inflection point us. downstream distance for-o = 0.05. 
(a )  @o = -12X, fi  = X/24, Z = 0;  (b)  390 = - 9 ~ ,  B = ~ / 2 4 ,  Z = 0;  (c) 990 = -16X, fi  = ~ / 1 8 ,  
Z = 0 ;  ( d )  280 = 1 2 ~ ,  a = E/24, Z = 12. 

Figure 2 shows how Y, varies with x2 for an initial spanwise velocity that behaves 
like 

at the wall where go is a constant. For this class of imposed cross-flows, (3.18), (3.28) 
and (3.50) can be solved analytically to obtain 

B(Z) = ~ ~ ( 0 ,  Z) = (2p)p1a0 sin 2 p ~  ( 7 4  

J U  m=4 

and 

PO22 = 2/jdx2x2, (7.4) 
where = 9A2/[2Pr(i)]3 and Q(”) is given by (3.52). The O(6)  terms in (3.43) 
and (3.52) were kept when computing the results presented here since these terms 
can be significant even at relatively small values of CJ. The mean-flow distortion 
0 initially grows linearly with increasing x2 (see (3.7), (3.14), (3.32), (3.43), (3.51) 
and (3.54)) causing Y, to move out from the wall. This type of linear disturbance 
growth is similar to the algebraic growth proposed by Ellingsen & Palm (1975), 
Hultgren & Gustavsson (1981) and Landahl (1990) as an alternative or ‘bypass’ tran- 
sition mechanism. However, only the mean-flow distortion (or vortex flow) undergoes 
this type of growth in the present study and the follow-on ‘secondary’ instability modes 
exhibit the more conventional exponential-type growth. In the present analysis, the 
initial mean-flow growth is eventually reversed by viscous effects once the viscous wall 
layer expands to fill the entire Blasius boundary layer, i.e. once x2 becomes O(op3). 
However, figures 2 and 3 show that the mean-flow inflection point produced by the 
distortion actually vanishes before this stage is reached. 

The initial parametric growth rate IC, computed from (6.22) and (5.35) for an 
imposed spanwise-velocity profile that satisfies (7.2) is shown in figure 4. Near the 
excitation device, i.e. at small values of /, the mean-flow inflection point lies very close 
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FIGURE 3. Scaled streamwise velocity profiles of the vortex flow within the viscous wall layer for 
c = 0.05, fl  = 7~124 and various values of x2. 

to the wall and, as shown by the figure, K ,  is negative when d 3 R 1 l 2  = ,I-' = 0(1) and 
given by the Tollmien-Schlichting-wave result when ~ T ~ ~ R ~ / ~  = cr3,1-' = O(1). The 
actual unsteady flow in this region would probably be dominated by two-dimensional 
viscous instabilities, i.e. by Tollmien-Schlichting waves, with the three-dimensional 
inviscid instabilities emerging further downstream where the mean-flow distortion has 
become sufficiently large. The continued growth of this distortion can then lead to 
much larger growth rates for the three-dimensional instabilities than those of the 
Tollmien-Schlichting waves. This is consistent with the experimental observations, 
which probably correspond to the case where d0R1/2  = O( l), and show that the three- 
dimensional structures (which can be identified with the oblique modes described by 
the present analysis) gradually emerge from the initial two-dimensional motion. 
Figures 2 and 4 suggest that these structures will eventually decay once the outward 
movement of the mean-flow inflection point has been reversed by viscous effects. 
However, the oblique modes can easily become nonlinear before this occurs and their 
amplitudes will then be determined by (6.20). 

The corresponding neutral-stability curves are shown in figure 5. Each curve 
has an effective upper branch which, as shown by figure 5(c), can move very far 
downstream when the spanwise wavelength becomes sufficiently small. This means 
that the amplification of the initially linear instability modes to nonlinear amplitudes 
can take place over a relatively large streamwise region. It is also worth noting (see 
figures 5a and 5d) that an imposed cross-flow velocity satisfying (7.2) can have a 
destabilizing effect regardless of the sign of 9?0. 

Since the nonlinear critical-layer equations (when expressed in terms of q )  explicitly 
involve the spanwise variation of the critical-level position, it would have been impos- 
sible to anticipate that the nonlinear oblique-mode amplitude would be determined 
by (6.20) which had previously been derived only for nonlinear interactions on strictly 
two-dimensional mean flows. However, the transformation (6.17) and (6.18) elimi- 
nates this spanwise variation from the problem and the two-dimensional mean-flow 
equation (6.20) is therefore obtained. This equation can be rescaled to eliminate the 
parameters K and M (see Goldstein & Choi 1989; Wu, et al. 1993; Leib & Lee 1994) 
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so that the resulting solutions depend only on the obliqueness angle 8 and the scaled 
viscous/growth-rate parameter J/rcj. 

The numerical results for the rescaled oblique-mode amplitude are relatively univer- 
sal and effectively the same as those given by Wu et al. (1993) in the viscous case and 
by Goldstein & Choi (1989) in the inviscid limit. We therefore do not present any new 
computations for A,  but merely note that, as was shown by Goldstein & Choi (1989), 
the solutions to (6.20) become singular at some finite downstream position, say xs, 
and that the local asymptotic expansion in the vicinity of this singularity is 

A - u,(x, - x ~ ) - ~ - @  (7.5) 

where a, and cp are constants that are determined expiicitly in Goldstein & Choi 
(1989). This suggests that the initially linear instability waves can exhibit nonlinear 
break down before the mean-flow distortion (which supports these waves) is able 
to decay. This is analogous to the argument used by Cowley (1987) and Wu et al. 
(1993) to explain the breakdown of Stokes layers which (unlike the experimentally 
observed flows) would exhibit global stability over each oscillation cycle if nonlinear 
breakdown did not occur. 

It is easy to solve the highly viscous amplitude equation (6.25) analytically and 
thereby show that the oblique modes continue to grow linearly in this limit. However, 
this solution shows that the wavenumber correction Re(04A’/iA) increases exponen- 
tially with increasing x1 - indicating that the assumed wavenumber scaling must 
eventually break down. The next stage of evolution should be governed by the full 
non-equilibrium equation (6.20). The highly viscous solutions to this equation indicate 
that the explosive growth still occurs in this case (Lee 1994) - which suggests that 
explosive growth will occur even when 010R1/2 = O( 1). 

The amplitude B of the spanwise-variable mean-flow distortion Re[B(xl)k(y, Z ) ]  
induced on the external linear flow by the nonlinear critical-layer interactions is given 
by Goldstein (1994) as 

= b, 1; 1 l ( X l  - <1)e - 2 x ( h - T z ) 3 / 3  lA(<2)I2 d<*d<1, (7.6) 

which shows that B also becomes singular when x1 + xs and behaves like 

B - &bslas12(Xs - x ~ ) - ~  (7-7) 

in this limit. 
Equations (3.7), (3.14) (3.19), (3.32), (4.2), (4.11) and (6.2) show that this induced 

spanwise-variable mean-flow velocity exceeds the initially imposed distortion velocity 
(in both the wall layer and main boundary layer) when 

x, -x1 < o . 
The corresponding large amplitudes can occur without violating the present asymp- 
totic scaling because the instability wave growth is self-induced and does not depend 
on the initial parametric growth once the oblique-mode amplitude becomes sufficiently 
large. 

Of course, the oblique-mode amplitude and associated spanwise-variable mean-flow 
distortion cannot continue to increase indefinitely, and a new stage of evolution must 
eventually be reached when, as pointed out by Goldstein & Lee (1992), the growth 
rate Re(04A’/A) becomes of the order of the wavelength scale o, i.e. when 

(7.8) 
2 

(7.9) 
3 x, - x1 = O ( 0  ), 
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FIGURE 4 (a-c). For caption see facing page. 
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FIGURE 4. Initial parametric growth rate us. scaled StroFhal number for Q = 0.05 and various values 

I = 0; ( d )  990 = 12x, B = 7 ~ / 2 4 , I =  0 ;  (e )  g o  = -127~, B = 7 ~ / 2 4 ,  I = l / 0 3 .  
of 8. ( a )  990 = -127C, B = 7C/24,I= 0 ;  (b)  990 = -9Z, B = 7C/24,I= 0 ;  (c )  g o  = - 1 6 ~ ,  B = 7 ~ / 1 8 ,  

which is much shorter than the length scale (7.8) at which the induced mean-flow 
distortion exceeds the one imposed on the flow. The unsteady flow and spanwise 
distortions are now O(aU,) in this smaller region and evolve on the relatively short 
wavelength scale 2. The resulting motion is, as noted in Goldstein & Lee (1992), 
primarily inviscid and determined by the triple-deck equations (Stewartson 1969; 
Messiter 1970), but with no viscous terms appearing in the nonlinear lower-deck 
equations. This latter region has the same thickness as the wall layer associated with 
the original vortex system. 

There must, of course, be a thin viscous region underlying the triple-deck structure. 
The flow in this lower region, which is governed by the usual three-dimensional 
boundary-layer equations with the externally imposed pressure gradients determined 
by the flow in the triple deck, can, as pointed out by Smith & Burggraf (1985), 
undergo large scale separation. However, it would not be possible to determine the 
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FGURE 5. Scaled neutral Strouhq number vs. downstream distance_ for Q = 0.05. (a)  BO = -127~, 

B = n/24 ,1= 0 ;  (e) WO = -1274 B = x /24 ,1=  l/a3. 
6 = 7~/24, 1 = 0 ;  ( b )  Bo = -97C, /l = 7~ /24 ,1=  0 ;  (c) l o  = -167C, /l = 7 ~ / 1 8 , 1 =  0 ;  ( d )  Bo = 127~, 

flow in the triple deck, even if separation did not occur, because the downstream 
boundary conditions for this effectively elliptic problem depend on the downstream 
flow which is, in essence, turbulent in the situation of interest here. 

While the relationship between the spanwise-wavelength scale g and the Reynolds 
number R has not been completely fixed in the present analysis, we have required 
that 

1 / R'l8 4 r~ Q 1. (7.10) 

The mean-flow distortion would be governed by the full three-dimensional triple- 
deck equations in the limit 0 + l/R1/*. The present scaling corresponds to the 
short-spanwise-wavelength limit of the triple-deck problem which was used by 
Rozhko & Ruban (1987) and subsequently by Choudhari et aE. (1992) to study 
Gortler vortices. However, the most appropriate distinguished scaling for the present 
problem corresponds to the order-one-wavelength limit 0 + 1. We chose to consider 
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the long-wavelength limit 041 in the hope that the analytical solutions that were ob- 
tainable in this limit would lead to a better understanding of the physical mechanisms 
involved. 

Large-scale numerical computations are required when cr = 1 since the spanwise- 
variable mean flow (3.3) and (3.4) can only be determined by solving the parabolized 
Navier-Stokes equations (3.5) and (3.6). The relevant solutions still grow linearly 
with increasing downstream distance when x2 is sufficiently small. In fact they are 
still given by (3.7)-(3.10), but with cr and ii set equal to unity and with UD, V D ,  WD 
and PD given by (3.53), (3.16) and (3.54), respectively. This shows that the algebraic 
growth of the steady distortion is still important when cr = 1. 

While the initial linear instability wave can still be determined from the generalized 
Rayleigh equation (4.15) once the mean-flow velocity U is known, the relevant 
solutions must now be found numerically since cr = 1. However, the long-wavelength 
solutions of (4.15) show that there is an effective upper branch to the neutral stability 
curve (see figure 5 )  - primarily because the mean-flow distortion ultimately decays to 
zero and thereby causes the inviscid instability wave growth rate (which is produced 
by this distortion) to vanish long before this decay is complete. Since this behaviour 
also occurs when cr = 1, all instability waves with sufficiently small initial amplitudes 
will now remain linear until their growth rates become sufficiently small. (Recall 
that the nonlinear amplitude of the instability waves scales with the growth rate and 
nonlinearity therefore occurs at smaller amplitudes when the growth rates become 
smaller.) 

The nonlinearity will then occur within a thin critical layer with the solutions 
outside this layer still given by (4.11) and (4.15)-(4.20). Hall & Horseman (1991), 
Horseman (1991) and Hall & Smith (1991) have studied the local critical-level be- 
haviour of the solutions to the generalized Rayleigh equation and have shown that 
it is nearly identical to that of the usual three-dimensional solutions to the Rayleigh 
equation for strictly two-dimensional mean flows. In a sense, all solutions of the 
Rayleigh problem for spanwise-variable mean flows behave like three-dimensional so- 
lutions to the Rayleigh problem for strictly two-dimensional mean flows in the vicinity 
of their critical levels. This is most easily shown by expressing (4.15) in orthogonal 
curvilinear coordinates with one set of coordinate surfaces corresponding to surfaces 
of constant mean-flow velocity U - as was done, for example, by Goldstein (1976, 

The similarity of the solutions within the critical layer itself is even more dramatic 
- assuming of course that the dominant nonlinearity still results from the self- 
interaction of a single instability wave. The critical-layer nonlinearity is still weak in 
the sense that it enters through an inhomogeneous term in a higher-order problem 
rather than through a coefficient in the lowest-order or dominant-balance equation 
and the instability wave amplitude A(x1) can therefore still be determined from a 
single amplitude-evolution equation, which is again given by (6.20) and (6.23) but 
now with different numerical values for the constants IC, M ,  and k, (Wundrow & 
Goldstein 1994). 

pp. 6-10). 

Appendix A. Solutions for o(') and @ ( I )  

In this appendix, solutions for o(r) and @ ( r )  are constructed by first substituting 
(3.43) into (3.36) and (3.38)-(3.42) and then taking the Laplace transform with respect 
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m 

( ) = 1 ePx2( . )dx2 

denotes the Laplace transform with respect to x2, 

and y denotes the digamma function defined on page 258 of Abramowitz & Stegun 
(1964). 

The relevant solutions to (A 1) and (A2) are 

t@’) = - ~ C ( L ~ S ) - ~ / ~ P , ,  [Gi(ij) - 3-1/2Ai(ij)] , (A 8) 

and 

where 6 G ( L 0 ~ ) 1 / 3 Y  and Ai and Gi are the Airy functions defined on pages 446 and 
448 of Abramowitz & Stegun (1964). It follows from (A4), (A9) and the asymptotic 
behaviour of the Airy functions for large values of their argument (Abramowitz & 
Stegun 1964, pp. 448250) that 

( 9 ~ ; ) - 1 / 3 r ( $ ) j 3 ~ ~ ~  = -Qr) - s 5 / 3 2  (A 

which can be inverted to give (3.50). 
Before inverting (A8) and (A9), it is convenient to rewrite these equations as 

r;tU) = - 2 - 1 q 1 ) - 1 ( 1 0 s ) 1 / 3 j 5  0 3  Dz 6(’)(s, Y) ,  (A 

and 
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and 

where z = q3/9 and U denotes a confluent hypergeometric function in the notation 
of Abramowitz & Stegun (1964, p. 504). Using (A 10) when inverting (A 12) then 
leads to (3.51). 

Appendix B. Mean-flow solution for x = O(0-l) 
In this appendix, we briefly discuss the mean-flow solution in the streamwise region 

characterized by (3.55). The lowest-order main-deck velocity field is a simple re- 
expansion of the solution (3.14)-(3.16) but, as can be anticipated from (3.28) and 
(3.54), with the particle displacement d set equal to zero (i.e. it is now of higher 
order). Equation (3.54) also implies that the pressure in this region should expand 
like 

p = C A A - ~ R - ~ / ~ $ ~  + . . . 

where A = r ~ - ' / ~ R - ' / ~ + l ,  
implicit A dependence 

(B 1)  
= l / l n  A and F D  is a function of 2 and Z that has the 

$ D  = FO(2,Z) + AFl(2,Z). (B 2) 
The main difference from the x = O ( C ~ R ' / ~ )  solution comes in the viscous wall 

layer which now corresponds to 
A 

Y = y/A = O(1). (B 3) 

where, like $ D ,  the functions 0, P, and F f  of 2, P, and 2 depend implicitly on A .  
The flow in this region is determined by 

1 0 9  oi + AOP + $Da = o p f ,  

AOY Wa + P D z  = f i p p ,  

(B 7) 

(B 8) 
A A  

with 
oi + Pp + W z  = O .  

A h  A h 

U = V = W = O  at Y = O ,  

W+A&J, fi+dR&J'ln(AP) as P +a, (B 11) 

D + o ,  W + A B  as 2+0 ,  (B 12) 

and 

where &J is defined by (3.29). The only difference from (3.35)-(3.40) is that the pressure 
gradient now appears in the streamwise momentum equation (B7) and the particle 
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displacement d does not appear in the boundary condition (B 11). This means that 
the pressure is completely determined by the solution in the lower deck and the now 
higher-order particle displacement is determined after the fact from the upper-deck 
problem. The solution procedure is essentially the same as be^fore. Since the similarity 
variable q remains order one when expressed in terms 2 and Y ,  it is again appropriate 
to seek a solution of the form 

O = J2B'(z)E(q) + O("(2, P , Z ; A ) ,  F? = JB(Z)G(q) + F?("(2, P , Z ; A )  (B 13) 

where the Laplace transforms of I@') and O(I) are determined by (A 1) and (A2) but 
with Y replaced by P and with the boundary conditions now given by 

~ ( 1 )  = C(') = 0 , i7:; = sFD - B,(o,z;A) at P = 0, (B 14) 

and 

where Q(m)(s, Z ; A )  determined from (A 6). 

ij(') is now 

VV1) + 0, + k Q p ( s ,  z ; A )  as P + co, (B 15) 

It therefore follows that is still given by (A8) but with f i  = while 

-31/3r(9 p D z z  + s ~ $ D - s $ D ( O , Z ; A ) ]  - 1 f i  J Ai(t)dt}. (B16) 

n o  
Substituting this result into (B15) and using the asymptotic behaviour of the Airy 
functions for large values of their arguments (Abramowitz & Stegun 1964, pp. 448- 
450) shows that 

(B 17) (9~;)-1/3r(;) p D z z  + s 2 "  P D  - s$,(o, Z; A ) ]  = -Qr)(s, 5 ; A ) ,  

and since (B7), (B 10) and (B12) imply that eD,(0 ,Z;A)  = 0, this equation can be 
inverted to give 

where Q(")(R,Z;A) is determined from (3.52). The solution to (B 18) that matches onto 
(3.54) as 2 + co is 

(91;)-1'3r( $)($D, ,  + $ D ~ ? )  = -Qi1'(2, 2 ;  A )  (B 18) 

where f denotes the Cauchy principal value. 
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